
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 576
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Dynamic and randomized Query Optimization
algorithms to improve optimality of access

plans
Ms. Deepali A. Patil, Ms. Aarti A. Patil, Prof. Thirumahal R.

Abstract— The goal of database performance tuning is to minimize the response time of your queries and to make the best use of your
system’s resources by minimizing network traffic, disk I/O, and CPU time. Query processing and optimization is a fundamental, if not
critical, part of any DBMS. Queries, in a high level and declarative language e.g. SQL, which require several algebraic operations, could
have several alternative compositions and ordering. Finding a “good” composition is the job of the optimizer. The primary goal of the query
optimizer is to find the cheapest access path to minimize the total time to process the query. In this paper many different dynamic and
randomized query algorithms that compute approximate solutions for producing optimal access plan are studied.

Keywords- DBMS, heuristic algorithm, join ordering, query optimization, query processing, randomized algorithm, SQL.

—————————— ——————————

1 INTRODUCTION
While executing query in Relational database system, finding
the optimal join ordering to create optimal access plan (query
plan) is very difficult. Since SQL query is declarative (i.e never
thinks that how the result obtained), there is a need to convert
this declarative query to procedural query for finding effective
plan of its execution. Join ordering is the primary focus of que-
ry optimization due to high processing cost. Traditionally,
optimizations of expressions are done by traversing the com-
plete solution space. But, it is applicable only where the 8-10
numbers of joins are used. This join ordering problem can be
solved by three classes of algorithms. The first one focuses on
the most important strategy, dynamic programming, which is
the one used by essentially all commercial systems. The se-
cond one discusses a promising approach based on random-
ized algorithms, and the third one talks about other search
strategies that have been proposed.

2 DETERMINISTIC SEARCH ALGORITHM
This class of algorithm performs some sort of deterministic
search [1] of solution space either through complete traversal
or by applying some heuristics to prune the space.
It starts from base relations and build plans by adding one
relation at each step. In dynamic programming it uses
breadth-first strategy and builds all possible plans before
choosing the “best” plan. In Greedy approach it uses depth-
first strategy and build only one plan. Its disadvantage is that,

for queries more than 10-15 joins, the running time explodes.
The Heuristics [4] used to prune the search space are:

2.1 Selection Projection Heuristics

Selection and projection processing never generate transitional
relations. Selection is processed upon first relation access and
projections are applied at the time of generating output of oth-
er operations. This heuristics prunes only suboptimal solution.
Separate processing of selection and projection would incur
additional computational cost.

2.2 Cartesian product Heuristics

Relations are always combined through the joins not by
Cartesian product.

2.3 Tree Form Heuristics

This is third heuristic that forms the execution plan trees
where internal operand of every join is always a base relation
and never a transitional result. Such a tree is called as left-deep
tree. Traditionally, bushy trees were formed in which we find

 different solutions for n base relations.
Now, the set of all possible left-deep access plans with n base
relations is reduced to n!.

3 GENETIC ALGORITHM
Genetic algorithms [1] make use of a randomized search strat-
egy very similar to biological evolution in their search for
good problem solutions. Although in this aspect genetic algo-
rithms resemble randomized algorithms as discussed above,
the approach shows enough differences to warrant a consider-
ation of its own. The basic idea is to start with a random popu-
lation and generate offspring by random crossover and muta-
tion. The “fittest” members of the population (according to the
cost function) survive the subsequent selection; the next gen-

————————————————
• Ms. Deepali A. Patil is a Lecturer in department of computer Engineering

in SLRTCE,University of Mumbai, India, E-mail:
deep.patil1987@gmail.com

• Ms. Aarti A. Patil is a Lecturer in department of computer Engineering in
SLRTCE,University of Mumbai, India, E-mail: aarti.patil21@gmail.com

• Prof. Thirumahal R. is Assistant Professor in department of Information
technology in TSEC, University of Mumbai, India, Email:
r_thirumahal@yahoo.com

IJSER

http://www.ijser.org/
mailto:deep.patil1987@gmail.com
mailto:aarti.patil21@gmail.com
mailto:r_thirumahal@yahoo.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 577
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

eration is based on these. The algorithm terminates as soon as
there is no further improvement or after a predetermined
number of generations. The fittest member of the last popula-
tion is the solution.
A problem with this approach might be that one member of
the population is so prominent that it dominates the whole
wheel. This way, it causes the disappearance of the other
members’ features.

4 RANDOMIZED ALGORITHM
Randomized algorithms [4] view solutions as points in a solu-
tion space and connect these points by edges that are defined
by a set of moves. It performs random walks in the state space.
It moves from state to state with the goal of finding a state
with the minimum cost. Two different moves are proposed for
modifying these solutions: Swap and 3Cycle. Swap exchanges
the positions of two arbitrary relations in the list, while 3Cycle
performs a cyclic rotation of three arbitrary relations in the list.
For instance, if R1R2R3R4R5 was a point in the solution space,
the application of Swap might lead to R1R4R3R2R5, whereas
3Cycle could yield R5R2R1R4R3.
Two Randomized algorithms: Iterative improvement (II) and
Simulated Annealing. This paper focuses on Iterative im-
provement (II):
.
4.1 Iterative Improvement (II):
The Iterative Improvement algorithm [4] starts at a random
state. It then performs a number of downhill moves in order to
find a local minimum. These moves are chosen as follows:
Starting at a random state S, II explores the set of neighbors of
S for possible moves. II determines the cost of S as well as that
of a randomly chosen neighbor.

Algorithm:

function IterativeImprovementII

outputs minstate “Optimized processing tree”

Step 1: assign minimum state to infinity.

Step 2: pick a random state.

Step 3: while not at a local minimum reached,

 pick a random neighbor to the current state.

 if the neighbor has a lower cost, move there.

 Step 4: if cost is lower than minimum cost then minimum
state will be the state found at the above steps.

Step 5: repeat until time limit not exceeded.

Step 6: then return the lowest local minimum (i.e min state).

4.2 Simulated Annealing
Simulated annealing (SA)[5] is a random-search technique
which exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure

(the annealing process) and the search for a minimum in a
more general system; it forms the basis of an optimisation
technique for combinatorial and other problems.Simulated
annealing [7] was developed in 1983 to deal with highly non-
linear problems. SA approaches the global maximisation prob-
lem similarly to using a bouncing ball that can bounce over
mountains from valley to valley. It begins at a high "tempera-
ture" which enables the ball to make very high bounces, which
enables it to bounce over any mountain to access any valley,
given enough bounces. As the temperature declines the ball
cannot bounce so high, and it can also settle to become
trapped in relatively small ranges of valleys. A generating dis-
tribution generates possible valleys or states to be explored.
An acceptance distribution is also defined, which depends on
the difference between the function value of the present gen-
erated valley to be explored and the last saved lowest valley.
The acceptance distribution decides probabilistically whether
to stay in a new lower valley or to bounce out of it. All the
generating and acceptance distributions depend on the tem-
perature. SA can find the global optimum.

Algorithm:

function SimulatedAnnealing

inputs state “Random starting point”

outputs minstate “Optimized processing tree”

minstate := state; cost := Cost(state); mincost := cost

temp := “Starting temperature”

do

 do

 newstate := “state after random move”

 newcost := Cost(newstate)

 if newcost <= cost then

 state := newstate

 cost := newcost

 else “With probability

 e^(newcost-cost/temp)”

 state := newstate

 cost := newcost

 end

 if cost < mincost then

 minstate := state

 mincost := cost

 end

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 578
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 while “Equilibrium not reached”

 “Reduce Temperature”

while “Not frozen”

return minstate;

SA's major advantage over other methods is an ability to avoid
becoming trapped in local minima. The algorithm employs a
random search which not only accepts changes that decrease
the objective function f (assuming a minimisation problem),
but also some changes that increase it. T. The latter are accept-
ed with a probability p = exp (-df / T) (1)

where df is the increase in f and T is a control parameter,
which by analogy with the original application is known as
the system ''temperature" irrespective of the objective function
involved.

5 CONCLUSION
To produce an optimal access plan and optimized join expres-
sions deterministic, genetic and randomized algorithms are
used. Because of new database applications, the complexity of
the optimization task has increased; more relations participate
in join expressions than in traditional relational database que-
ries. Enumeration of all possible evaluation plans is no longer
feasible. But in terms of running time randomized algorithm
and genetic algorithms are better than deterministic algorithm
because they have larger solution space. Algorithms that com-
pute approximate solutions, namely heuristic, randomized
and genetic algorithms, show different capabilities for solving
the optimization task. Randomized and genetic algorithms are
much better suited for join optimizations; although they re-
quire a longer running time, the results are far better.

REFERENCES
[1] Prof. M.A.Pund, R.Jadhao, P.D.Thakare, “A Role of Query Optimiza-

tio in Relational Database”, IJSER,Volume 2,Issue 1,January-2011.

[2] A Swami, Optimization of Large join Queries Combining Heuristics
and combinatorial Techniques, in Proceedings of the 1989 ACM-
SIGMOD Conference, Portland, OR, June 1989.

[3] G. Antoshenkov, “Dynamic Query Optimization in RdblVMS”, Proc.

IEEE Int „1. Conf on Data Eng., Vienna, Austria, April 1993,538.

[4] Michael Steinbrunn, Guido oerkotte, Alfons Kemper, “Heuristic and
randomized optimization for the join ordering problem”, The VLDB
Journal (1997) 6: 191–208.

[5] Ingber, L., 1993, "Simulated annealing: practice versus theory", Mathl.

Comput. Modelling 18, 11,29-57.

[6] Yannis E.Ioannidis and Youngkyung Cha Kang: Randomized Algo-

rithms for Optimizing Large Join Queries.

[7] Franco Busetti “Simulated annealing overview”

IJSER

http://www.ijser.org/

	1 Introduction
	2 Deterministic search algorithm
	2.1 Selection Projection Heuristics
	2.2 Cartesian product Heuristics
	Relations are always combined through the joins not by Cartesian product.
	2.3 Tree Form Heuristics
	This is third heuristic that forms the execution plan trees where internal operand of every join is always a base relation and never a transitional result. Such a tree is called as left-deep tree. Traditionally, bushy trees were formed in which we fin...

	3 Genetic algorithm
	4 Randomized algorithm
	4.1 Iterative Improvement (II):
	4.2 Simulated Annealing

	5 Conclusion
	References

